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ADDENDUM 

Proof of crossing formula for 2D percolation 

Robert M Ziff 
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, 
USA 

Received I I July 1995 

Abstract. The author’s recently conjectured expression for Cardy’s crossing formula in ZD 
percolation is rewritten in terms of theta and elliptic functions, and verified explicitly. Exact 
results for aspect ratio r equal to integral powers of two are also given. 

In 111, the author conjectured that Cardy’s result [2] (see also [3]) for the crossing probability 
in percolation 

n,(r) = c P 2 ~ 1 ( f ,  $; $: rl )  (1) 

where q = (1 -k)’/(I +k)’, r = 2K(k2)/K(1 - k z )  and c = 3r(f)/r(4)2, can be written 
directly in terms of r as 

where q ( r )  is the probability density of crossing a rectangular system of height r and 
of unit width in the vertical direction, and n:(r) (the derivative with respect to r )  gives 
the probability density that the maximum height of clusters grown from the bottom of an 
infinitely high rectangular system is equal to r (assuming free boundaries on the sides in 
both cases). The form of (2) was conjectured from a series development and verified to 
high order, but not proven explicitly. In this addendum, I provide that proof, and also give 
alternative expressions for (2). 

Those alternative expressions are 

The first result is implied by 24.2.1 of [4] or (13a.b) of [l], and the second puts this product 
in terms of the Jacobi theta function 0; = %‘I4 nZl(1 - q2”)3 = 2q’/4 C.”=o(-1)”(2n + 
1)qnztn where q = e-nr. The third expression follows by applying = 0&04 and 
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formulae for e; in terms of the elliptic integral K. Note that in [I] it was shown that r and 
4 are directly related according to r = K(l - o)/K(q) .  Expanding (3a) or (3b) in powers 
of q yields the series expansion of n:(r) given in [ I ] .  

Equation (3c) above leads directly to an explicit proof of (2).  The derivative of Cardy’s 
result (1) is given by [l] 

where the dot represents differentiation with respect to the argument (a prime is used to 
indicate the complementary argument K’(q) = K(q1) = K(l -q)). This result is equivalent 
to (3c) if the relation 

is valid. But this identity follows directly from f = ( E  - 01 K)/2qql  and Legendre’s 
relation EK’ + E’K - KK‘ = n/Z [5], and thus, the equivalence of (1) and (2) follows. 

In [I] it was shown that Landen’s transformation can be used to find how q scales with 
r :  q(2r) = [(I - [l - ~(r)]’/~)/(l + [I - q(r)11/z)]2. Applying this same transformation 
to (3c) yields 

which also implies [z:(2r) l6 = [n:(4r)l*[n~(r)14 + 16[n~(4r)I4[n~(r)l2. These yield 
n~(2)/zL(l) = 2-3/2, aL(4)/nL(2) = 2”/4(21/2 - I), etc. Furthermore, nL(1) = 
r ( t )4/(r(f)325/331/2~)  % 0.520246 1715, so closed expressions for n i ( r )  for all r equal 
to powers of two follow. (Note x:(I / r )  = r’z:(r).) Finally, a plot of nL(r) shows that its 
maximum is at r X 0.523 5217 (where (d/dq)B; = 0) with value r: % -0.737 3222. 

Corrections to [l] are as follows: k(4) = 25/4/(21/2 + 1) % 0.985 171 431 and 
q(4) = [@‘I4 - l)/(Z’I4 + I)l4 on p 1253. Also, the series in (16) can be found to 
all orders directly by using q = @/I?;. 
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