Proof of crossing formula for 2D percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 286479
(http://iopscience.iop.org/0305-4470/28/22/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:45

Please note that terms and conditions apply.

ADDENDUM

Proof of crossing formula for 2D percolation

Robert M Ziff
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA

Received 11 July 1995

Abstract

The author's recently conjectured expression for Cardy's crossing formula in 2 D percolation is rewritten in terms of theta and elliptic functions, and verified explicitily. Exact results for aspect ratio r equal to integral powers of two are also given.

In [1], the author conjectured that Cardy's result [2] (see also [3]) for the crossing probability in percolation

$$
\begin{equation*}
\pi_{v}(r)=c \eta^{1 / 3}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; \frac{4}{3} ; \eta\right) \tag{1}
\end{equation*}
$$

where $\eta=(1-k)^{2} /(1+k)^{2}, r=2 K\left(k^{2}\right) / K\left(\mathrm{I}-k^{2}\right)$ and $c=3 \Gamma\left(\frac{2}{3}\right) / \Gamma\left(\frac{1}{3}\right)^{2}$, can be written directly in terms of r as

$$
\begin{equation*}
\pi_{v}^{\prime}(r)=-\frac{2^{4 / 3} \pi c}{3}\left[\sum_{n=-\infty}^{\infty}(-1)^{n} \mathrm{e}^{-3 \pi r(n+1 / 6)^{2}}\right]^{4} \tag{2}
\end{equation*}
$$

where $\pi_{\nu}(r)$ is the probability density of crossing a rectangular system of height r and of unit width in the vertical direction, and $\pi_{v}^{\prime}(r)$ (the derivative with respect to r) gives the probability density that the maximum height of clusters grown from the bottom of an infinitely high rectangular system is equal to r (assuming free boundaries on the sides in both cases). The form of (2) was conjectured from a series development and verified to high order, but not proven explicitly. In this addendum, I provide that proof, and also give alternative expressions for (2).

Those alternative expressions are

$$
\begin{align*}
\pi_{v}^{\prime}(r) & =-\frac{2^{4 / 3} \pi c}{3} \mathrm{e}^{-\pi r / 3} \prod_{n=1}^{\infty}\left(1-\mathrm{e}^{-2 \pi r n}\right)^{4} \tag{3a}\\
& =-\frac{\pi c}{3}\left(\vartheta_{1}^{\prime}\right)^{4 / 3} \tag{3b}\\
& =-\frac{4 c}{3 \pi}[\eta(1-\eta)]^{1 / 3} K^{2}(\eta) \tag{3c}
\end{align*}
$$

The first result is implied by 24.2 .1 of [4] or ($13 a, b$) of [1], and the second puts this product in terms of the Jacobi theta function $\vartheta_{1}^{\prime}=2 q^{1 / 4} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{3}=2 q^{1 / 4} \sum_{n=0}^{\infty}(-1)^{n}(2 n+$ 1) $q^{n^{2}+n}$ where $q=\mathrm{e}^{-\pi r}$. The third expression follows by applying $\vartheta_{1}^{\prime}=\vartheta_{2} \vartheta_{3} \vartheta_{4}$ and
formulae for ϑ_{i} in terms of the elliptic integral K. Note that in [1] it was shown that r and η are directly related according to $r=K(1-\eta) / K(\eta)$. Expanding (3a) or (3b) in powers of q yields the series expansion of $\pi_{v}^{\prime}(r)$ given in [1].

Equation (3c) above leads directly to an explicit proof of (2). The derivative of Cardy's result (1) is given by [1]

$$
\begin{equation*}
\pi_{v}^{\prime}(r)=-\frac{c}{3[\eta(1-\eta)]^{2 / 3}} \frac{K^{2}(\eta)}{\dot{K}(1-\eta) K(\eta)+K(1-\eta) \dot{K}(\eta)} \tag{4}
\end{equation*}
$$

where the dot represents differentiation with respect to the argument (a prime is used to indicate the complementary argument $K^{\prime}(\eta)=K\left(\eta_{1}\right)=K(1-\eta)$). This result is equivalent to ($3 c$) if the relation

$$
\begin{equation*}
\dot{K}(1-\eta) K(\eta)+K(1-\eta) \dot{K}(\eta)=\frac{\pi}{4 \eta(1-\eta)} \tag{5}
\end{equation*}
$$

is valid. But this identity follows directly from $\dot{K}=\left(E-\eta_{1} K\right) / 2 \eta \eta_{\mathrm{I}}$ and Legendre's relation $E K^{\prime}+E^{\prime} K-K K^{\prime}=\pi / 2$ [5], and thus, the equivalence of (1) and (2) follows.

In [1] it was shown that Landen's transformation can be used to find how η scales with $r: \eta(2 r)=\left\{\left(1-[1-\eta(r)]^{1 / 2}\right) /\left(1+[1-\eta(r)]^{1 / 2}\right)\right\}^{2}$. Applying this same transformation to (3c) yields

$$
\begin{equation*}
\pi_{v}^{\prime}(2 r)=\pi_{v}^{\prime}(r)\left(\frac{\eta^{2}(r)}{256(1-\eta(r))}\right)^{1 / 6} \tag{6}
\end{equation*}
$$

which also implies $\left[\pi_{v}^{\prime}(2 r)\right]^{6}=\left[\pi_{v}^{\prime}(4 r)\right]^{2}\left[\pi_{v}^{\prime}(r)\right]^{4}+16\left[\pi_{v}^{\prime}(4 r)\right]^{4}\left[\pi_{v}^{\prime}(r)\right]^{2}$. These yield $\pi_{v}^{\prime}(2) / \pi_{v}^{\prime}(1)=2^{-3 / 2}, \pi_{v}^{\prime}(4) / \pi_{v}^{\prime}(2)=2^{-7 / 4}\left(2^{1 / 2}-1\right)$, etc. Furthermore, $\pi_{v}^{\prime}(1)=$ $\Gamma\left(\frac{1}{4}\right)^{4} /\left(\Gamma\left(\frac{1}{3}\right)^{3} 2^{5 / 3} 3^{1 / 2} \pi\right) \approx 0.5202461715$, so closed expressions for $\pi_{v}^{\prime}(r)$ for all r equal to powers of two follow. (Note $\pi_{v}^{\prime}(1 / r)=r^{2} \pi_{v}^{\prime}(r)$.) Finally, a plot of $\pi_{v}^{\prime}(r)$ shows that its maximum is at $r \approx 0.5235217$ (where $(\mathrm{d} / \mathrm{d} q) \vartheta_{1}^{\prime}=0$) with value $\pi_{v}^{\prime} \approx-0.7373222$.

Corrections to [l] are as follows: $k(4)=2^{5 / 4} /\left(2^{1 / 2}+1\right) \approx 0.985171431$ and $\eta(4)=\left[\left(2^{1 / 4}-1\right) /\left(2^{1 / 4}+1\right)\right]^{4}$ on p 1253. Also, the series in (16) can be found to all orders directly by using $\eta=v_{2}^{4} / v_{3}^{4}$.

Acknowledgments

This material is based upon work supported by the US National Science Foundation under Grant No DMR-9520700.

References

[1] Ziff R M 1995 J. Phys. A: Math. Gen. 281249
[2] Cardy J 1992 J. Phys. A: Math. Gen. 25 L201
[3] Langlands R P, Pouliot Ph and Saint-Aubin Y 1994 Bull. Am. Math. Soc. 301
[4] Abramowitz M and Stegun I A (ed) 1964 Handbook of Mathematical Functions (Washington, DC: US Government Printing Office).
[5] Whittaker E T and Watson G N 1927 Modern Analysis (Cambridge: Cambridge University Press) 4th edn, p 521

